Question 56
Which of the following code blocks reads in the JSON file stored at filePath, enforcing the schema expressed in JSON format in variable json_schema, shown in the code block below?
Code block:
1.json_schema = """
2.{"type": "struct",
3. "fields": [
4. {
5. "name": "itemId",
6. "type": "integer",
7. "nullable": true,
8. "metadata": {}
9. },
10. {
11. "name": "supplier",
12. "type": "string",
13. "nullable": true,
14. "metadata": {}
15. }
16. ]
17.}
18."""
Code block:
1.json_schema = """
2.{"type": "struct",
3. "fields": [
4. {
5. "name": "itemId",
6. "type": "integer",
7. "nullable": true,
8. "metadata": {}
9. },
10. {
11. "name": "supplier",
12. "type": "string",
13. "nullable": true,
14. "metadata": {}
15. }
16. ]
17.}
18."""
Question 57
The code block shown below should write DataFrame transactionsDf as a parquet file to path storeDir, using brotli compression and replacing any previously existing file. Choose the answer that correctly fills the blanks in the code block to accomplish this.
transactionsDf.__1__.format("parquet").__2__(__3__).option(__4__, "brotli").__5__(storeDir)
transactionsDf.__1__.format("parquet").__2__(__3__).option(__4__, "brotli").__5__(storeDir)
Question 58
Which of the following code blocks sorts DataFrame transactionsDf both by column storeId in ascending and by column productId in descending order, in this priority?
Question 59
The code block displayed below contains an error. The code block should configure Spark to split data in 20 parts when exchanging data between executors for joins or aggregations. Find the error.
Code block:
spark.conf.set(spark.sql.shuffle.partitions, 20)
Code block:
spark.conf.set(spark.sql.shuffle.partitions, 20)
Question 60
The code block displayed below contains an error. The code block should produce a DataFrame with color as the only column and three rows with color values of red, blue, and green, respectively.
Find the error.
Code block:
1.spark.createDataFrame([("red",), ("blue",), ("green",)], "color")
Instead of calling spark.createDataFrame, just DataFrame should be called.
Find the error.
Code block:
1.spark.createDataFrame([("red",), ("blue",), ("green",)], "color")
Instead of calling spark.createDataFrame, just DataFrame should be called.