Question 16

Your company receives both batch- and stream-based event data. You want to process the data using Google Cloud Dataflow over a predictable time period. However, you realize that in some instances data can arrive late or out of order. How should you design your Cloud Dataflow pipeline to handle data that is late or out of order?
  • Question 17

    Data Analysts in your company have the Cloud IAM Owner role assigned to them in their projects to allow them to work with multiple GCP products in their projects. Your organization requires that all BigQuery data access logs be retained for 6 months. You need to ensure that only audit personnel in your company can access the data access logs for all projects. What should you do?
  • Question 18

    You work for an economic consulting firm that helps companies identify economic trends as they happen.
    As part of your analysis, you use Google BigQuery to correlate customer data with the average prices of the 100 most common goods sold, including bread, gasoline, milk, and others. The average prices of these goods are updated every 30 minutes. You want to make sure this data stays up to date so you can combine it with other data in BigQuery as cheaply as possible. What should you do?
  • Question 19

    Which TensorFlow function can you use to configure a categorical column if you don't know all of the possible values for that column?
  • Question 20

    Case Study: 2 - MJTelco
    Company Overview
    MJTelco is a startup that plans to build networks in rapidly growing, underserved markets around the world. The company has patents for innovative optical communications hardware. Based on these patents, they can create many reliable, high-speed backbone links with inexpensive hardware.
    Company Background
    Founded by experienced telecom executives, MJTelco uses technologies originally developed to overcome communications challenges in space. Fundamental to their operation, they need to create a distributed data infrastructure that drives real-time analysis and incorporates machine learning to continuously optimize their topologies. Because their hardware is inexpensive, they plan to overdeploy the network allowing them to account for the impact of dynamic regional politics on location availability and cost. Their management and operations teams are situated all around the globe creating many-to- many relationship between data consumers and provides in their system. After careful consideration, they decided public cloud is the perfect environment to support their needs.
    Solution Concept
    MJTelco is running a successful proof-of-concept (PoC) project in its labs. They have two primary needs:
    Scale and harden their PoC to support significantly more data flows generated when they ramp to more than 50,000 installations.
    Refine their machine-learning cycles to verify and improve the dynamic models they use to control topology definition.
    MJTelco will also use three separate operating environments ?development/test, staging, and production ?
    to meet the needs of running experiments, deploying new features, and serving production customers.
    Business Requirements
    Scale up their production environment with minimal cost, instantiating resources when and where needed in an unpredictable, distributed telecom user community. Ensure security of their proprietary data to protect their leading-edge machine learning and analysis.
    Provide reliable and timely access to data for analysis from distributed research workers Maintain isolated environments that support rapid iteration of their machine-learning models without affecting their customers.
    Technical Requirements
    Ensure secure and efficient transport and storage of telemetry data Rapidly scale instances to support between 10,000 and 100,000 data providers with multiple flows each.
    Allow analysis and presentation against data tables tracking up to 2 years of data storing approximately
    100m records/day
    Support rapid iteration of monitoring infrastructure focused on awareness of data pipeline problems both in telemetry flows and in production learning cycles.
    CEO Statement
    Our business model relies on our patents, analytics and dynamic machine learning. Our inexpensive hardware is organized to be highly reliable, which gives us cost advantages. We need to quickly stabilize our large distributed data pipelines to meet our reliability and capacity commitments.
    CTO Statement
    Our public cloud services must operate as advertised. We need resources that scale and keep our data secure. We also need environments in which our data scientists can carefully study and quickly adapt our models. Because we rely on automation to process our data, we also need our development and test environments to work as we iterate.
    CFO Statement
    The project is too large for us to maintain the hardware and software required for the data and analysis.
    Also, we cannot afford to staff an operations team to monitor so many data feeds, so we will rely on automation and infrastructure. Google Cloud's machine learning will allow our quantitative researchers to work on our high-value problems instead of problems with our data pipelines.
    MJTelco needs you to create a schema in Google Bigtable that will allow for the historical analysis of the last 2 years of records. Each record that comes in is sent every 15 minutes, and contains a unique identifier of the device and a data record. The most common query is for all the data for a given device for a given day. Which schema should you use?