Online Access Free Professional-Machine-Learning-Engineer Practice Test
| Exam Code: | Professional-Machine-Learning-Engineer |
| Exam Name: | Google Professional Machine Learning Engineer |
| Certification Provider: | |
| Free Question Number: | 290 |
| Posted: | Dec 11, 2025 |
You need to execute a batch prediction on 100 million records in a BigQuery table with a custom TensorFlow DNN regressor model, and then store the predicted results in a BigQuery table. You want to minimize the effort required to build this inference pipeline. What should you do?
You developed a Vertex Al pipeline that trains a classification model on data stored in a large BigQuery table.
The pipeline has four steps, where each step is created by a Python function that uses the KubeFlow v2 API The components have the following names:
You launch your Vertex Al pipeline as the following:
You perform many model iterations by adjusting the code and parameters of the training step.
You observe high costs associated with the development, particularly the data export and preprocessing steps.
You need to reduce model development costs.
What should you do?
You are developing a custom image classification model in Python. You plan to run your training application on Vertex Al Your input dataset contains several hundred thousand small images You need to determine how to store and access the images for training. You want to maximize data throughput and minimize training time while reducing the amount of additional code. What should you do?
You are training an LSTM-based model on Al Platform to summarize text using the following job submission script:
You want to ensure that training time is minimized without significantly compromising the accuracy of your model. What should you do?
You have created a Vertex Al pipeline that includes two steps. The first step preprocesses 10 TB data completes in about 1 hour, and saves the result in a Cloud Storage bucket The second step uses the processed data to train a model You need to update the model's code to allow you to test different algorithms You want to reduce pipeline execution time and cost, while also minimizing pipeline changes What should you do?
Recent Comments (The most recent comments are at the top.)
Need for cetification