Question 1
Your team is working on an NLP research project to predict political affiliation of authors based on articles they have written. You have a large training dataset that is structured like this:

A)

B)

C)

D)


A)

B)

C)

D)

Question 2
You need to train a computer vision model that predicts the type of government ID present in a given image using a GPU-powered virtual machine on Compute Engine. You use the following parameters:
* Optimizer: SGD
* Image shape = 224x224
* Batch size = 64
* Epochs = 10
* Verbose = 2
During training you encounter the following error: ResourceExhaustedError: out of Memory (oom) when allocating tensor. What should you do?
* Optimizer: SGD
* Image shape = 224x224
* Batch size = 64
* Epochs = 10
* Verbose = 2
During training you encounter the following error: ResourceExhaustedError: out of Memory (oom) when allocating tensor. What should you do?
Question 3
You work for a large technology company that wants to modernize their contact center. You have been asked to develop a solution to classify incoming calls by product so that requests can be more quickly routed to the correct support team. You have already transcribed the calls using the Speech-to-Text API. You want to minimize data preprocessing and development time. How should you build the model?
Question 4
You work on a growing team of more than 50 data scientists who all use AI Platform. You are designing a strategy to organize your jobs, models, and versions in a clean and scalable way. Which strategy should you choose?
Question 5
A Machine Learning Specialist uploads a dataset to an Amazon S3 bucket protected with server-side encryption using AWS KMS.
How should the ML Specialist define the Amazon SageMaker notebook instance so it can read the same dataset from Amazon S3?
How should the ML Specialist define the Amazon SageMaker notebook instance so it can read the same dataset from Amazon S3?